
Scalability! But at what COST?

Frank McSherry Michael Isard Derek G. Murray
Unaffiliated Microsoft Research Unaffiliated⇤

Abstract
We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system’s scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDI, and find that many
systems have either a surprisingly large COST, often
hundreds of cores, or simply underperform one thread
for all of their reported configurations.

1 Introduction
“You can have a second computer once you’ve
shown you know how to use the first one.”

-Paul Barham

The published work on big data systems has fetishized
scalability as the most important feature of a distributed
data processing platform. While nearly all such publi-
cations detail their system’s impressive scalability, few
directly evaluate their absolute performance against rea-
sonable benchmarks. To what degree are these systems
truly improving performance, as opposed to parallelizing
overheads that they themselves introduce?

Contrary to the common wisdom that effective scal-
ing is evidence of solid systems building, any system
can scale arbitrarily well with a sufficient lack of care in
its implementation. The two scaling curves in Figure 1
present the scaling of a Naiad computation before (sys-
tem A) and after (system B) a performance optimization
is applied. The optimization, which removes paralleliz-
able overheads, damages the apparent scalability despite
resulting in improved performance in all configurations.
While this may appear to be a contrived example, we will
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Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation “scales” far better,
despite (or rather, because of) its poor performance.

argue that many published big data systems more closely
resemble system A than they resemble system B.

1.1 Methodology

In this paper we take several recent graph processing pa-
pers from the systems literature and compare their re-
ported performance against simple, single-threaded im-
plementations on the same datasets using a high-end
2014 laptop. Perhaps surprisingly, many published sys-
tems have unbounded COST—i.e., no configuration out-
performs the best single-threaded implementation—for
all of the problems to which they have been applied.

The comparisons are neither perfect nor always fair,
but the conclusions are sufficiently dramatic that some
concern must be raised. In some cases the single-
threaded implementations are more than an order of mag-
nitude faster than published results for systems using
hundreds of cores. We identify reasons for these gaps:
some are intrinsic to the domain, some are entirely avoid-
able, and others are good subjects for further research.

We stress that these problems lie not necessarily with
the systems themselves, which may be improved with
time, but rather with the measurements that the authors
provide and the standard that reviewers and readers de-
mand. Our hope is to shed light on this issue so that
future research is directed toward distributed systems
whose scalability comes from advances in system design
rather than poor baselines and low expectations.
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name twitter rv [11] uk-2007-05 [4]
nodes 41,652,230 105,896,555
edges 1,468,365,182 3,738,733,648
size 5.76GB 14.72GB

Table 1: The “twitter rv” and “uk-2007-05” graphs.

fn PageRank20(graph: GraphIterator, alpha: f32) {
let mut a = Vec::from_elem(graph.nodes, 0f32);
let mut b = Vec::from_elem(graph.nodes, 0f32);
let mut d = Vec::from_elem(graph.nodes, 0u32);

graph.map_edges(|x, y| { d[x] += 1; });

for iter in range(0u, 20u) {
for i in range(0u, graph.nodes) {

b[i] = alpha * a[i] / d[i];
a[i] = 1f32 - alpha;

}

graph.map_edges(|x, y| { a[y] += b[x]; });
}

}

Figure 2: Twenty PageRank iterations.

2 Basic Graph Computations
Graph computation has featured prominently in recent
SOSP and OSDI conferences, and represents one of the
simplest classes of data-parallel computation that is not
trivially parallelized. Conveniently, Gonzalez et al. [8]
evaluated the latest versions of several graph-processing
systems in 2014. We implement each of their tasks using
single-threaded C# code, and evaluate the implementa-
tions on the same datasets they use (see Table 1).1

Our single-threaded implementations use a simple
Boost-like graph traversal pattern. A GraphIterator
type accepts actions on edges, and maps the action across
all graph edges. The implementation uses unbuffered IO
to read binary edge data from SSD and maintains per-
node state in memory backed by large pages (2MB).

2.1 PageRank
PageRank is an computation on directed graphs which it-
eratively updates a rank maintained for each vertex [16].
In each iteration a vertex’s rank is uniformly divided
among its outgoing neighbors, and then set to be the ac-
cumulation of scaled rank from incoming neighbors. A
dampening factor alpha is applied to the ranks, the lost
rank distributed uniformly among all nodes. Figure 2
presents code for twenty PageRank iterations.

1Our C# implementations required some manual in-lining, and are
less terse than our Rust implementations. In the interest of clarity, we
present the latter in this paper. Both versions of the code produce com-
parable results, and will be made available online.

scalable system cores twitter uk-2007-05
GraphChi [10] 2 3160s 6972s
Stratosphere [6] 16 2250s -
X-Stream [17] 16 1488s -
Spark [8] 128 857s 1759s
Giraph [8] 128 596s 1235s
GraphLab [8] 128 249s 833s
GraphX [8] 128 419s 462s
Single thread (SSD) 1 300s 651s
Single thread (RAM) 1 275s -

Table 2: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
GraphChi and X-Stream report times for 5 Page-
Rank iterations, which we multiplied by four.

fn LabelPropagation(graph: GraphIterator) {
let mut label = Vec::from_fn(graph.nodes, |x| x);
let mut done = false;

while !done {
done = true;
graph.map_edges(|x, y| {
if label[x] != label[y] {
done = false;
label[x] = min(label[x], label[y]);
label[y] = min(label[x], label[y]);

}
});

}
}

Figure 3: Label propagation.

Table 2 compares the reported times from several
systems against a single-threaded implementations of
PageRank, reading the data either from SSD or from
RAM. Other than GraphChi and X-Stream, which re-
read edge data from disk, all systems partition the graph
data among machines and load it in to memory. Other
than GraphLab and GraphX, systems partition edges by
source vertex; GraphLab and GraphX use more sophisti-
cated partitioning schemes to reduce communication.

No scalable system in Table 2 consistently out-
performs a single thread, even when the single thread
repeatedly re-reads the data from external storage. Only
GraphLab and GraphX outperform any single-threaded
executions, although we will see in Section 3.1 that the
single-threaded implementation outperforms these sys-
tems once it re-orders edges in a manner akin to the par-
titioning schemes these systems use.

2.2 Connected Components
The connected components of an undirected graph are
disjoint sets of vertices such that all vertices within a set
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scalable system cores twitter uk-2007-05
Stratosphere [6] 16 950s -
X-Stream [17] 16 1159s -
Spark [8] 128 1784s � 8000s
Giraph [8] 128 200s � 8000s
GraphLab [8] 128 242s 714s
GraphX [8] 128 251s 800s
Single thread (SSD) 1 153s 417s

Table 3: Reported elapsed times for label propa-
gation, compared with measured times for single-
threaded label propagation from SSD.

are mutually reachable from each other.
In the distributed setting, the most common algorithm

for computing connectivity is label propagation [9] (Fig-
ure 3). In label propagation, each vertex maintains a label
(initially its own ID), and iteratively updates its label to
be the minimum of all its neighbors’ labels and its cur-
rent label. The process propagates the smallest label in
each component to all vertices in the component, and the
iteration converges once this happens in every compo-
nent. The updates are commutative and associative, and
consequently admit a scalable implementation [5].

Table 3 compares the reported running times of la-
bel propagation on several data-parallel systems with a
single-threaded implementation reading from SSD. De-
spite using orders of magnitude less hardware, single-
threaded label propagation is significantly faster than any
system above.

3 Better Baselines
The single-threaded implementations we have presented
were chosen to be the simplest, most direct implementa-
tions we could think of. There are several standard ways
to improve them, yielding single-threaded implementa-
tions which strictly dominate the reported performance
of the systems we have considered, in some cases by an
additional order of magnitude.

3.1 Improving graph layout
Our single-threaded algorithms take as inputs edge itera-
tors, and while they have no requirements on the order in
which edges are presented, the order does affect perfor-
mance. Up to this point, our single-threaded implemen-
tations have enumerated edges in vertex order, whereby
all edges for one vertex are presented before moving
on to the next vertex. Both GraphLab and GraphX in-
stead partition the edges among workers, without requir-
ing that all edges from a single vertex belong to the same

scalable system cores twitter uk-2007-05
GraphLab 128 249s 833s
GraphX 128 419s 462s
Vertex order (SSD) 1 300s 651s
Vertex order (RAM) 1 275s -
Hilbert order (SSD) 1 242s 256s
Hilbert order (RAM) 1 110s -

Table 4: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
The single-threaded times use identical algorithms,
but with different edge orders.

worker, which enables those systems to exchange less
data [7, 8].

A single-threaded graph algorithm does not perform
explicit communication, but edge ordering can have a
pronounced effect on the cache behavior. For example,
the edge ordering described by a Hilbert curve [2], akin
to ordering edges (a,b) by the interleaving of the bits
of a and b, exhibits locality in both a and b rather than
just a as in the vertex ordering. Table 4 compares the
running times of single-threaded PageRank with edges
presented in Hilbert curve order against other implemen-
tations, where we see that it improves over all of them.

Converting the graph data to a Hilbert curve order is an
additional cost in pre-processing the graph. The process
amounts to transforming pairs of node identifiers (edges)
into an integer of twice as many bits, sorting these values,
and then transforming back to pairs of node identifiers.
Our implementation transforms the twitter rv graph in
179 seconds using one thread, which can be a perfor-
mance win even if pre-processing is counted against the
running time.

3.2 Improving algorithms
The problem of properly choosing a good algorithm lies
at the heart of computer science. The label propagation
algorithm is used for graph connectivity not because it
is a good algorithm, but because it fits within the “think
like a vertex” computational model [13], whose imple-
mentations scale well. Unfortunately, in this case (and
many others) the appealing scaling properties are largely
due to the algorithm’s sub-optimality; label propagation
simply does more work than better algorithms.

Consider the algorithmic alternative of Union-Find
with weighted union [3], a simple O(m logn) algorithm
which scans the graph edges once and maintains two in-
tegers for each graph vertex, as presented in Figure 4.
Table 5 reports its performance compared with imple-
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scalable system cores twitter uk-2007-05
GraphLab 128 242s 714s
GraphX 128 251s 800s
Single thread (SSD) 1 153s 417s
Union-Find (SSD) 1 15s 30s

Table 5: Times for various connectivity algorithms.

fn UnionFind(graph: GraphIterator) {
let mut root = Vec::from_fn(graph.nodes, |x| x);
let mut rank = Vec::from_elem(graph.nodes, 0u8);

graph.map_edges(|mut x, mut y| {
while (x != root[x]) { x = root[x]; }
while (y != root[y]) { y = root[y]; }
if x != y {

match rank[x].cmp(&rank[y]) {
Less => { root[x] = y; },
Greater => { root[y] = x; },
Equal => { root[y] = x; rank[x] += 1; },

}
}

});
}

Figure 4: Union-Find with weighted union.

mentations of label propagation, faster than the fastest
of them (the single-threaded implementation) by over an
order of magnitude.

There are many other efficient algorithms for comput-
ing graph connectivity, several of which are paralleliz-
able despite not fitting in the “think like a vertex” model.
While some of these algorithms may not be the best fit
for a given distributed system, they are still legitimate
alternatives that must be considered.

4 Applying COST to prior work
Having developed single-threaded implementations, we
now have a basis for evaluating the COST of systems. As
an exercise, we will retrospectively apply these baselines
to the published numbers for existing scalable systems,
even though the single-threaded implementations are on
more modern hardware.

4.1 PageRank
Figure 5 presents the published scaling information
from PowerGraph (GraphLab) [7], GraphX [8], and
Naiad [14], as well as two single-threaded measurements
as horizontal lines. The intersection with the upper line
indicates the point at which the system out-performs
a simple resource-constrained implementation, and is
a suitable baseline for systems with similar limitations
(e.g., GraphChi and X-Stream). The intersection with the
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Figure 5: Published scaling measurements for Page-
Rank on twitter rv. The first plot is the time per
warm iteration. The second plot is the time for ten it-
erations from a cold start. Horizontal lines are single-
threaded measurements.

lower line indicates the point at which the system out-
performs a feature-rich implementation, including pre-
processing and sufficient memory, and is a suitable base-
line for systems with similar resources (e.g., GraphLab,
Naiad, and GraphX).

From these curves we would say that Naiad has a
COST of 16 cores for PageRanking the twitter rv graph.
Although not presented as part of their scaling data,
GraphLab reports a 3.6s measurement on 512 cores, and
achieves a COST of 512 cores. GraphX does not in-
tersect the corresponding single-threaded measurement,
and we would say it has unbounded COST.

4.2 Graph connectivity
The published works do not have scaling information for
graph connectivity, but given the absolute performance
of label propagation on the scalable systems relative
to single-threaded union-find we are not optimistic that
such scaling data would have lead to a bounded COST.

Instead, Figure 6 presents the scaling of two Naiad im-
plementations of parallel union-find [12], the same ex-
amples from Figure 1. The two implementations differ in
their storage of per-vertex state: the slower one uses hash
tables where the faster one uses arrays. The faster im-
plementation has a COST of 10 cores, while the slower
implementation has a COST of roughly 100 cores.

The use of hash tables is the root cause of the factor
of ten increase in COST, but it does provide some value:
node identifiers need not lie in a compact set of integers.
This evaluation makes the trade-off clearer to both sys-
tem implementors and potential users.

5 Lessons learned
Several aspects of scalable systems design and imple-
mentation contribute to overheads and increased COST.
The computational model presented by the system re-
stricts the programs one may express. The target hard-
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Figure 6: Two Naiad implementations of union find.

ware may reflect different trade-offs, perhaps favoring
capacity and throughput over high clock frequency. Fi-
nally, the implementation of the system may add over-
heads a single thread doesn’t require. Understanding
each of these overheads is an important part of assessing
the capabilities and contributions of a scalable system.

To achieve scalable parallelism, big data systems re-
strict programs to models in which the parallelism is ev-
ident. These models may not align with the intent of the
programmer, or the most efficient parallel implementa-
tions for the problem at hand. Map-Reduce intention-
ally precludes memory-resident state in the interest of
scalability, leading to substantial overhead for algorithms
that would benefit from it. Pregel’s “think like a vertex”
model requires a graph computation to be cast as an iter-
ated local computation at each graph vertex as a function
of the state of its neighbors, which captures only a lim-
ited subset of efficient graph algorithms. Neither of these
designs are the “wrong choice”, but it is important to dis-
tinguish “scalability” from “efficient use of resources”.

The cluster computing environment is different from
the environment of a laptop. The former often values
high capacity and throughput over latency, with slower
cores, storage, and memory. The laptop now embod-
ies the personal computer, with lower capacity but faster
cores, storage, and memory. While scalable systems are
often a good match to cluster resources, it is important to
consider alternative hardware for peak performance.

Finally, the implementation of the system may intro-
duce overheads that conceal the performance benefits of
a scalable system. High-level languages may facilitate
development, but they can introduce performance issues
(garbage collection, bounds checks, memory copies). It
is especially common in a research setting to evaluate
a new idea with partial or primitive implementations of
other parts of the system (serialization, memory manage-
ment, networking), asserting that existing techniques will
improve the performance. While many of these issues
might be improved with engineering effort that does not
otherwise advance research, nonetheless it can be very
difficult to assess whether the benefits the system claims
will still manifest once the fat is removed.

There are many good reasons why a system might
have a high COST when compared with the fastest
purpose-built single-threaded implementation. The sys-
tem may target a different set of problems, be suited for
a different deployment, or be a prototype designed to as-
sess components of a full system. The system may also
provide other qualitative advantages, including integra-
tion with an existing ecosystem, high availability, or se-
curity, that a simpler solution cannot provide. As Sec-
tion 4 demonstrates, it is nonetheless important to eval-
uate the COST, both to explain whether a high COST is
intrinsic to the proposed system, and because it can high-
light avoidable inefficiencies and thereby lead to perfor-
mance improvements for the system.

6 Future directions (for the area)

While this note may appear critical of research in dis-
tributed systems, we believe there is still good work to
do, and our goal is to provide a framework for measuring
and making the best forward progress.

There are several examples of performant scalable
systems. Both Galois [15] and Ligra [18] are shared-
memory systems that significantly out-perform their dis-
tributed peers when run on single machines. Naiad [14]
introduces a new general purpose dataflow model, and
out-performs even specialized systems. Understanding
what these systems did right and how to improve on
them is more important than re-hashing existing ideas in
new domains compared against only the poorest of prior
work.

Similarly, there are numerous examples of scalable al-
gorithms and computational models; one only needs to
look back to the parallel computing research of decades
past. Borůvka’s algorithm [1] is nearly ninety years old,
parallelizes cleanly, and solves a more general problem
than label propagation. The Bulk Synchronous Paral-
lel model [19] is surprisingly more general than related
work sections would have you believe. These algorithms
and models are richly detailed, analyzed, and in many
cases already implemented.

Fundamentally, a part of good research is making sure
we are asking the right questions. “Can systems be made
to scale well?” is trivially answered (in the introduction)
and is not itself the right question. There is a substantial
amount of good research to do, but identifying progress
requires being more upfront about existing alternatives.
The COST of a scalable system uses the simplest of al-
ternatives, but is an important part of understanding and
articulating progress made by research on these systems.
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